シラバス Syllabus

授業名 Data Visualization
Course Title Data Visualization
担当教員 Instructor Name Minjeong Ham
コード Couse Code NUC420_N25B
授業形態 Class Type 講義 Regular course
授業形式 Class Format On Campus
単位 Credits 2
言語 Language EN
科目区分 Course Category 専門教育科目 / Specialized Subject
学位 Degree BBA
開講情報 Terms / Location 2025 UG Nisshin Term4

授業の概要 Course Overview

Mission Statementとの関係性 / Connection to our Mission Statement

This course aligns with NUCB’s mission to cultivate globally-minded, ethical business leaders by equipping students with data visualization skills to derive insights for informed decision-making.

授業の目的(意義) / Importance of this course

In the modern business environment, the ability to effectively visualize data is essential for understanding complex information, communicating insights, and guiding strategic managerial decisions.

到達目標 / Achievement Goal


Students will be able to design, create, and interpret visual representations of data using industry-standard tools to support managerial decision-making.

Students will develop an understanding of how data visualization techniques apply to managerial perspectives.

本授業の該当ラーニングゴール Learning Goals

*本学の教育ミッションを具現化する形で設定されています。

LG1 Critical Thinking
LG2 Diversity Awareness
LG3 Ethical Decision Making
LG4 Effective Communication
LG5 Business Perspectives (BSc)
LG6 Managerial Perspectives (BBA)
LG7 International Perspectives (BA)

受講後得られる具体的スキルや知識 Learning Outcomes


Apply principles of graphical perception and design to develop clear and impactful visualizations.

Use software tools to create interactive charts and dashboards.

Critically evaluate visualizations for accuracy, clarity, inclusivity, and bias.

Integrate visualizations into business reports and presentations to inform managerial decisions.

SDGsとの関連性 Relevance to Sustainable Development Goals

Goal 4 質の高い教育をみんなに(Quality Education)

教育手法 Teaching Method

教育手法 Teaching Method % of Course Time
インプット型 Traditional 20 %
参加者中心型 Participant-Centered Learning ケースメソッド Case Method 80 %
フィールドメソッド Field Method 0 %
合計 Total 100 %

事前学修と事後学修の内容、レポート、課題に対するフィードバック方法 Pre- and Post-Course Learning, Report, Feedback methods

授業スケジュール Course Schedule

第1日(Day1)

Case 1

●使用するケース
Good Charts: The HBR Guide to Making Smarter, More Persuasive Data Visualizations (1)

第2日(Day2)

Case 2

●使用するケース
Good Charts: The HBR Guide to Making Smarter, More Persuasive Data Visualizations (2)

第3日(Day3)

Case 3

●使用するケース
Market Street Wine: Extending the Aisle
To Plot or Not to Plot: An Exercise on Understanding and Comparing Datasets

第4日(Day4)

Case 4

●使用するケース
Flying Around Real Estate Development: Persuading with Data Visualizations

第5日(Day5)

Case 5

●使用するケース
Saving Lives with Data Visualizations (A): Charts in the Time of Cholera
Saving Lives with Data Visualizations (B): Charts in the Time of Cholera

第6日(Day6)

Case 6

●使用するケース
Using Data Visualisation to Find F&B Opportunities during a Pandemic

第7日(Day7)

Case 7

●使用するケース
Using Data Analytics and Visualization in Accounting and Auditing at Toby Biotech Inc.

成績評価方法 Evaluation Criteria

*成績は下記該当項目を基に決定されます。
*クラス貢献度合計はコールドコールと授業内での挙手発言の合算値です。
講師用内規準拠 Method of Assessment Weights
コールドコール Cold Call 0 %
授業内での挙手発言 Class Contribution 70 %
クラス貢献度合計 Class Contribution Total 70 %
予習レポート Preparation Report 0 %
小テスト Quizzes / Tests 0 %
シミュレーション成績 Simulation 0 %
ケース試験 Case Exam 0 %
最終レポート Final Report 30 %
期末試験 Final Exam 0 %
参加者による相互評価 Peer Assessment 0 %
合計 Total 100 %

評価の留意事項 Notes on Evaluation Criteria

使用ケース一覧 List of Cases

    ケースは使用しません。

教科書 Textbook

  • 「 」 ()

参考文献・資料 Additional Readings and Resource

授業調査に対するコメント Comment on Course Evaluation

担当教員のプロフィール About the Instructor 


Minjeong Ham is an Assistant Professor at NUCB. She received her Ph.D. in Information Systems from Yonsei University, Seoul, South Korea. She was a postdoctoral fellow at Korea University before joining NUCB. Her research interests include Information Systems adoption and usage in digital business, especially in the creative industry. A significant aspect of her research centers on privacy concerns in personalized advertising, examining the delicate balance between user data protection and effective ad targeting.

Refereed Articles

  • (2025) Personal data strategies in digital advertising: Can first-party data outshine third-party data?. International Journal of Information Management 80 0268-4012
  • (2024) How does OTT social viewing relieve pandemic-related depressive symptoms? Investigating the moderated mediation model of social connectedness and network types. The Communication Review 10714421
  • (2023) Personalization, Privacy and Algorithms in Online Advertising. Yonsei University
  • (2021) The effects of internet proliferation on search engine and over-the-top service markets. Telecommunications Policy 45(8): 03085961
  • (2021) Empirical study on video clip consumption: focusing on viewing habits and use motives. International Journal of Mobile Communications 19(2): 1741-5217






ページ上部へ戻る