シラバス Syllabus

授業名 プログラミング入門
Course Title Introduction to Computer Programming
担当教員 Instructor Name 笹沼 克信(Katsunobu Sasanuma)
コード Couse Code NUC304_N22B
授業形態 Class Type 講義 Regular course
授業形式 Class Format On Campus
単位 Credits 2
言語 Language JP
科目区分 Course Category 共通専門教育科目300系 / Specialized Subject 300
学位 Degree BSc
開講情報 Terms / Location 2022 UG Nisshin Term3

授業の概要 Course Overview

プログラミング能力は情報化社会の基礎を担います。プログラミングの教育を通じて、情報化社会の動向を理解し新たなビジネスを創出するイノベーティブなリーダーの育成を目指します。
本講義ではアクティブラーニングを通してプログラミングの基礎を学びます。学生は自分のPCを使ってエディタでPythonを用いたプログラムを作成し、動作を確認していきます。また、グループでプログラムを作成し、仲間と共同で問題解決する力を養います。
本科目を学ぶことで、学生はプログラミングの基本的な文法、制御、データ構造などを身に付けることができます。また、実習を通して自分一人で、またチームメイトと共同でプログラミングできる力を身に付けます。

This course teaches fundamental knowledge of programming, which is a basis of information society. The course also aims to educate innovative leaders who can contribute to the creation of new business.
Students master programming skills through active learning in this course. Students build and run their own Python programs. Students also cooperate with their classmates and discuss their ideas in groups to develop Python programs.
Students taking this course will learn the fundamentals of programming and will acquire skills to develop computer programs alone or with a help of their teammates.

本授業の該当ラーニングゴール Learning Goals

*本学の教育ミッションを具現化する形で設定されています。

LG1 Critical Thinking
LG4 Effective Communication

受講後得られる具体的スキルや知識 Learning Outcomes

学生はこの授業を通して、Pythonを用いた簡単なプログラムを作成できるようになり、またプログラミングについての広範な基礎知識を身に付けることが期待されています。

Upon successful completion of this course, students are expected to be able to build simpler Python programs. They are also expected to acquire the fundamentals of programming.

SDGsとの関連性 Relevance to Sustainable Development Goals

Goal 4 質の高い教育をみんなに(Quality Education)

教育手法 Teaching Method

教育手法 Teaching Method % of Course Time
インプット型 Traditional 40 %
参加者中心型 Participant-Centered Learning ケースメソッド Case Method 60 %
フィールドメソッド Field Method 0 %
合計 Total 100 %

学習方法、レポート、課題に対するフィードバック方法 Course Approach, Report, Feedback methods

・授業を理解し議論に参加するために、各講義で自分のPCを用いてプログラムの動作を確認します:各自ノートPCを必ず持参してください。
・基礎的な知識を学ぶために予習が必須です。(準備にかかる時間の目安は2-3時間程度です。)
・予習レポート、挙手発言、インクラスエクササイズ(ケース試験)、ミニテスト等で評価を行います。フィードバックはオフィスアワー、クラス内、提出物へのコメント等で対応します。
・中央情報センター(図書館)の蔵書を積極的に活用してください。
・シラバス及びケースは講義の進捗状況を見て、適宜変更する可能性があります。

授業スケジュール Course Schedule

第1日(Day1)

授業の概要説明:授業の進め方、成績評価方法等について説明します
基本文法:リテラル、変数、文字列、ライブラリの使い方、などを学ぶ
実習及びインクラスエクササイズ


●使用するケース
プログラミングケースシナリオ1(オリジナルケース)

第2日(Day2)

実行:条件分岐、繰り返し、関数、などを学ぶ
実習及びインクラスエクササイズ

●使用するケース
プログラミングケースシナリオ2(オリジナルケース)

第3日(Day3)

データ構造:リスト、ダブル、辞書、集合、クラス、などを学ぶ
実習及びインクラスエクササイズ

●使用するケース
プログラミングケースシナリオ3(オリジナルケース)

第4日(Day4)

ミニテスト1
例外処理:エラーに対応する
実習及びインクラスエクササイズ

●使用するケース
プログラミングケースシナリオ4(オリジナルケース)

第5日(Day5)

正規表現:パターンに対応する
実習及びインクラスエクササイズ

●使用するケース
プログラミングケースシナリオ5(オリジナルケース)

第6日(Day6)

入出力:ファイルの取り扱い
実習及びインクラスエクササイズ

●使用するケース
プログラミングケースシナリオ6(オリジナルケース)

第7日(Day7)

ミニテスト2
並列処理:様々な方法を学ぶ
実習及びインクラスエクササイズ

●使用するケース
プログラミングケースシナリオ7(オリジナルケース)

成績評価方法 Evaluation Criteria

*成績は下記該当項目を基に決定されます。
*クラス貢献度合計はコールドコールと授業内での挙手発言の合算値です。
講師用内規準拠 Method of Assessment Weights
コールドコール Cold Call 0 %
授業内での挙手発言 Class Contribution 60 %
クラス貢献度合計 Class Contribution Total 60 %
予習レポート Preparation Report 10 %
小テスト Quizzes / Tests 20 %
シミュレーション成績 Simulation 0 %
ケース試験 Case Exam 10 %
最終レポート Final Report 0 %
期末試験 Final Exam 0 %
参加者による相互評価 Peer Assessment 0 %
合計 Total 100 %

評価の留意事項 Notes on Evaluation Criteria

予習レポート10%、挙手発言60%、インクラスエクササイズ(ケース試験)10%、ミニテスト(2回)20%

・予習レポート
第一日目の授業を除いて、予習レポートのGoogle Classroomへの提出が必要となります。コピペで作成されたレポートは零点とします。
・挙手発言
発言回数だけでなく、発言内容、プログラミング課題への取り組みとその内容についても考慮します。
・インクラスエクササイズ(ケース試験)
授業で学んだ基本事項及びケースについて、理解できているかどうかを確認するためのクイズを出します。
・ミニテスト
インクラスエクササイズをベースにして、ミニテストを第4日目と第7日目の授業開始時に出します。

使用ケース一覧 List of Cases

    ケースは使用しません。

教科書 Textbook

  • Grodet Aymeric, 松本 翔太, 新居 雅行「Python基礎ドリル 穴埋め式」オーム社(2022)978-4274225154

参考文献・資料 Additional Readings and Resource

(1) 国本大悟、他 スッキリわかるPython入門 インプレス (2019) ISBN-13: ‎978-4295006329
(2) 山田祥寛 独習Python 翔泳社 (2020) ISBN-13: 978-4798163642
(3) 金城俊哉 Pythonプログラミング逆引き大全 400の極意 秀和システム (2021) ISBN-13: 978-4798063669
(4) 柴田望洋 新・明解Python入門 SBクリエイティブ (2019) ISBN-13: ‎978-4815601522

授業調査に対するコメント Comment on Course Evaluation

初年度担当科目。皆さんの理解度に応じて授業内容と進み具合を調整したいと思っています。

担当教員のプロフィール About the Instructor 

東京大学教養学部基礎科学科卒業後、東京大学大学院理学系研究科相関理化学修了(物性物理学専攻)。東芝研究開発センター(研究員)、アルメック(コンサルタント)を経てハーバード大学とマサチューセッツ工科大学において修士課程(公共政策及びオペレーションズリサーチ専攻)を修了した後、カーネギーメロン大学においてPh.D.取得(オペレーションズマネージメント専攻)。その後ニューヨーク州立大学ストーニーブルック校アシスタントプロフェッサーを経て、現職。現在、名古屋商科大学経営学部教授、及び東北大学大学院経済学研究科政策デザイン研究センター客員准教授。
専門は確率論、確率過程、行列理論、ネットワーク理論、在庫理論等。博士論文ではマルコフ連鎖について新しい分析方法を提案し、2016年のWilliam Cooper博士論文賞を受賞。複雑な確率システムの挙動を説明するシンプルな法則を見つけ出すことを研究課題としている。これまでオペレーションズリサーチ、オペレーションズマネージメント、情報システム等の各授業を担当し、研究成果は国際学会及び国際ジャーナルに発表されている。

Katsunobu Sasanuma is a professor at NUCB, Nagoya University of Commerce and Business. He also holds a visiting associate professor position at the Research Center for Policy Design at the Graduate School of Economics and Management at Tohoku University. Prior to joining the faculty at NUCB, Dr. Sasanuma was an assistant professor at College of Business at Stony Brook University, State University of New York.
He graduated from the University of Tokyo with bachelor’s and master’s degrees, majoring in condensed matter physics. Upon graduation, he worked as a semiconductor engineer at Toshiba R&D Center and as a consultant at Almec Corporation. Afterwards, he studied Public Policy at Harvard Kennedy School and Operations Research at Operations Research Center at Sloan School of Management at Massachusetts Institute of Technology. He then pursued his Ph.D. in Public Policy and Management (Operations Management) at Heinz College at Carnegie Mellon University.
His research areas include probability theory, stochastic processes, queueing theory, queueing network, and inventory management. His doctoral thesis, Congestion-Based Control Policy for Service Systems, explores a new Markov chain decomposition technique to analyze service systems, and was given the 2016 William W. Cooper Doctoral Dissertation Award at Carnegie Mellon University. He is particularly interested in finding simple laws of physics in complex real-world systems and applying the findings to improve the operations of such systems. He has taught classes in Operations Research/Operations Management/Information Systems. His work has been presented at various conferences and has appeared in professional journals.

Refereed Articles

  • (2022) A marginal analysis framework to incorporate the externality effect of ordering perishables. Operations Research Perspectives 9(100230): 2214-7160
  • (2022) An opaque selling scheme to reduce shortage and wastage in perishable inventory systems. Operations Research Perspectives 9(100220): 2214-7160
  • (2022) Controlling arrival and service rates to reduce sensitivity of queueing systems with customer abandonment. Results in Control and Optimization 6(100089): 2666-7207
  • (2021) Evaluating the Dynamic Impact of Theater Performances and Sports Events on Parking Demand in Downtown Pittsburgh. Smart Cities 4(4): 2624-6511
  • (2021) Asymptotic Analysis for Systems with Deferred Abandonment. Mathematics 9(18): 2227-7390






ページ上部へ戻る