シラバス Syllabus

授業名 データプレゼンテーション
Course Title Data Presentation
担当教員 Instructor Name 納田 泰成(Taisei Noda)
コード Couse Code NUC122_N25B
授業形態 Class Type 講義 Regular course
授業形式 Class Format On Campus
単位 Credits 2
言語 Language JP
科目区分 Course Category 共通専門教育科目300系 / Specialized Subject 300
学位 Degree BSc
開講情報 Terms / Location 2025 UG Nisshin Term3

授業の概要 Course Overview

Misson Statementとの関係性 / Connection to our Mission Statement

未踏の地を切り拓き、ビジネスや社会の発展に貢献するには、不確実な状況下での組織内外の意思決定が不可欠です。本講義では、受講者がそのような状況でデータに基づき効果的に意思疎通を図るスキルを習得することを目指します。
To pioneer new frontiers and contribute to the advancement of business and society, decision-making within and beyond organizations is essential, even in uncertain situations. This course aims to equip participants with the skills to communicate effectively based on data in such contexts.

授業の目的(意義) / Importance of this course

自分のデータ分析の目的を明確にし、それに基づいて適切なデータ分析を行い、得られた結果を効果的にプレゼンテーションできるようになること。
To clearly define the purpose of one's data analysis, conduct appropriate analysis based on it, and effectively present the results.

到達目標 / Achievement Goal

学生が自ら立てた仮説をデータを用いて検証し、デザインの原則に則ったスライドを作成し、分析結果を示す図表を含んだプレゼンテーションができるようになること。

Students will be able to test their own hypotheses using data and create presentations that include visualizations of their analysis results, following design principles.

本授業の該当ラーニングゴール Learning Goals

*本学の教育ミッションを具現化する形で設定されています。

LG1 Critical Thinking
LG4 Effective Communication
LG5 Business Perspectives (BSc)

受講後得られる具体的スキルや知識 Learning Outcomes

・データ分析を設計するスキル
・Excelを活用したデータの可視化スキル
・デザインの原則に基づいたスライドを作成するスキル
・プレゼンテーションスキル

- Skills to design data analysis
- Skills to visualize data using Excel
- Skills to create slides based on design principles
- Presentation skills

SDGsとの関連性 Relevance to Sustainable Development Goals

Goal 4 質の高い教育をみんなに(Quality Education)

教育手法 Teaching Method

教育手法 Teaching Method % of Course Time
インプット型 Traditional 50 %
参加者中心型 Participant-Centered Learning ケースメソッド Case Method 50 %
フィールドメソッド Field Method 0 %
合計 Total 100 %

事前学修と事後学修の内容、レポート、課題に対するフィードバック方法 Pre- and Post-Course Learning, Report, Feedback methods

事前学修:
講義前にその日の講義内容に対応する課題を提出して頂きます。約2時間の学修を想定しています。
事後学修:
講義の最後にその日の講義内容に対応する小テストとエクセル演習を行います。講義後に小テストやエクセル演習のフィードバックをもとに各自約1-2時間の復習を想定しています。
レポート・課題に対するフィードバック:
講義後に個別にGoogle Classroomでフィードバックします。
中央情報センター(図書館)の活用について:
授業内容を深く理解するために積極的に活用してください。

授業スケジュール Course Schedule

第1日(Day1)

イントロダクション
[前半]データ分析を始める前に(教科書1章)
・影の得点王(ケース)
・問いから始めよう
・データ分析の基本ステップ
[後半]演習:データ分析の計画
・問いは何か?
・必要なデータは何か?
・PowerPointの使い方

●使用するケース
影の得点王(自作ケース)

第2日(Day2)

[前半]プレゼンテーション演習1
・データ分析の計画をプレゼンテーション
[後半]デザインに学ぶスライド作成の技術(参考文献1)
・コンテスト(ケース)
・デザインの4つの原則
・「読みにくいスライド」の作り方

●使用するケース
コンテスト(自作ケース)

第3日(Day3)

記述統計
[前半]基本統計でデータの傾向をつかもう(教科書2章)
・Excel演習:データの読み込み
・記述統計の算出
・ピボットテーブルの使い方
[後半]カテゴリカル変数の処理(教科書5章)
・欠損値の処理
・ダミー変数の作成

第4日(Day4)

データの可視化(教科書3章)
[前半]1変数のグラフ
・世界の年間水使用量(ケース)
・データの分布を記述するグラフ
[後半]2変数間の関係を示すグラフ
・共分散と相関係数による分析
・散布図の作成

●使用するケース
世界の年間水使用量(ケース)

第5日(Day5)

仮説検定(教科書4章)
[前半]確率分布
・推定統計とは何か
・帰無仮説と対立仮説
・確率分布
[後半]仮説検定の手続き
・帰無仮説と対立仮説
・仮説検定で起こる2種類の「間違い」
・Excel演習:期末試験の点数の分布

第6日(Day6)

2変数の関係を検証する(教科書6章)
[前半]線形回帰モデル(教科書6章)
・分散・共分散・相関係数
・線形回帰の仕組みと解釈
・決定係数
[後半]プレゼンテーションの準備
・プレゼンテーションのコツ


第7日(Day7)

プレゼンテーション演習2
・データ分析結果のプレゼンテーション

成績評価方法 Evaluation Criteria

*成績は下記該当項目を基に決定されます。
*クラス貢献度合計はコールドコールと授業内での挙手発言の合算値です。
講師用内規準拠 Method of Assessment Weights
コールドコール Cold Call 0 %
授業内での挙手発言 Class Contribution 40 %
クラス貢献度合計 Class Contribution Total 40 %
予習レポート Preparation Report 20 %
小テスト Quizzes / Tests 20 %
シミュレーション成績 Simulation 0 %
ケース試験 Case Exam 0 %
最終レポート Final Report 10 %
期末試験 Final Exam 10 %
参加者による相互評価 Peer Assessment 0 %
合計 Total 100 %

定期試験 Final Exam

あり

評価の留意事項 Notes on Evaluation Criteria

講義内の積極的な発言を高く評価します。また、プレゼンテーション演習中の質問も高く評価します。

使用ケース一覧 List of Cases

    ケースは使用しません。

教科書 Textbook

  • 三好大悟「統計学の基礎から学ぶExcelデータ分析の全知識 改訂2版(できるビジネス)」インプレス(2025)9784295021407

参考文献・資料 Additional Readings and Resource

1. Robin Williams (著), 吉川典秀 (訳), 小原司, 米谷テツヤ (解説) (2016) 『ノンデザイナーズ・デザインブック[第4版]』マイナビ出版, ISBN: 978-4-8399-5555-7
2. David M. Diez, Mine Çetinkaya-Rundel, Christopher D. Barr (著), 国友直人, 小暮厚之, 吉田靖 (訳) (2021) 『データ分析のための統計学入門 原著第4版』日本統計協会, ISBN: 978-4822341053.

授業調査に対するコメント Comment on Course Evaluation

初年度担当科目です。受講者の皆様からのフィードバックを授業期間中にぜひお寄せください。

担当教員のプロフィール About the Instructor 









ページ上部へ戻る