シラバス Syllabus

授業名 Leading in the Age of Data
Course Title Leading in the Age of Data
担当教員 Instructor Name Ricardo Lim
コード Couse Code CLD208_G24N
授業形態 Class Type 講義 Regular course
授業形式 Class Format On Campus
単位 Credits 2
言語 Language EN
科目区分 Course Category 発展科目300系 / Advanced & Specialized
学位 Degree Exed
開講情報 Terms / Location 2024 GSM Nagoya Fall

授業の概要 Course Overview

Misson Statementとの関係性 / Connection to our Mission Statement

The new frontier will require looking at a flood of data from customers, the web, social media. Competition demands that organizations use data to make better decision, predict customer behavior, and store knowledge. For the past ten years top consulting firms like McKinsey and KPMG have espoused “Digitalization” (or digitization). It seems everything now is “digital.”—Digital leadership and culture. Digital responses to COVID. Digital strategies. What is digitalization about?

授業の目的(意義) / Importance of this course

Digitalization partly about “using digital data.” Terms like big data, data science, and data analytics are mystical, even intimidating. We spend the first part of the course on demystifying the jargon. We will do a light treatment of these concepts, in order to understand the scientific “engines” of digitalization. We study hard-nosed big data crunching, such as customer lifetime value of Telcos and banks.

Data is also part of strategy. In the second part, we discuss how digital initiatives impel business models. Where do these fit for companies like Telenor, Lemonade, M-Kopa,. J. Crew? Also, given the new technologies, how do we capture data to fuel the data engines?

In the last part we cover data for non-profits and doing social good for the base of the pyramid. We also study the social elements of information and the latest use of Chat GPT and AI.

到達目標 / Achievement Goal


By the end of the course, participants should::

1. Understand how data enables business models
2. Refresh on basics of statistcal analysis and their more sophisticated cousins (e.g. machine learning, predictive analysis)
3. Understand how AI and ChatGPT affects business
4. Undertand how data cna drive social good

本授業の該当ラーニングゴール Learning Goals

*本学の教育ミッションを具現化する形で設定されています。

LG1 Critical Thinking
LG2 Diversity Awareness
LG3 Ethical Decision Making
LG4 Effective Communication
LG6 Innovative Leadership (MBA)
LG7 Global Perspective (GLP)

受講後得られる具体的スキルや知識 Learning Outcomes


By the end of the course, participants will be able to:

1. Do a broad survey of the digitalization movement in the 2000s.
2. Survey the Understand terms such as predictive vs prescriptive stats, AI, machine learning to be able to communicate with and manage data scientists and analysts.
3. Understand the mechanics of big data and interpretation of predictive tools, and translate results into practical business insights.
4. Explore various business models and how digitalization enables
5. Understand the social aspects of information.

SDGsとの関連性 Relevance to Sustainable Development Goals

Goal 4 質の高い教育をみんなに(Quality Education)

教育手法 Teaching Method

教育手法 Teaching Method % of Course Time
インプット型 Traditional 0 %
参加者中心型 Participant-Centered Learning ケースメソッド Case Method 100 %
フィールドメソッド Field Method 0 %
合計 Total 100 %

事前学修と事後学修の内容、レポート、課題に対するフィードバック方法 Pre- and Post-Course Learning, Report, Feedback methods

N/A

授業スケジュール Course Schedule

第1日(Day1)

S01 - Introduction. Being Digital. Analytics vs Science. Information Rules (network effects, lock in).
S02 - 03 Worry-free STATS refresher


●使用するケース
KFC China CB0031
Cases from Ricky Lim:

Customer Lifetime Value
Correlation and regression (and data)
Recommender Systems - Collaborative Filtering

第2日(Day2)

Stats refersher continued

●使用するケース
Case from Ricky Lim : Logistic Regression (an intro to Machine learning)
Telenor: Revolutionizing Retail Banking in Serbia IN1328

第3日(Day3)

S01 - AI driven busness models Lemonade discussion
S02 - Chat GPT discussion


●使用するケース
Lemonade: Delighting Insurance Customers with AI and Behavioural Economics IN1673
OpenAI and the Large Language Model Market

第4日(Day4)

S01 Data insighting
S02 data for social good


●使用するケース
J. Crew: Are Americans Ready to Dress Down W27129
M-KOPA Solar: Using Digital Disruption to Connect the World's Poor LBS 188

第5日(Day5)



第6日(Day6)



第7日(Day7)



成績評価方法 Evaluation Criteria

*成績は下記該当項目を基に決定されます。
*クラス貢献度合計はコールドコールと授業内での挙手発言の合算値です。
講師用内規準拠 Method of Assessment Weights
コールドコール Cold Call 0 %
授業内での挙手発言 Class Contribution 60 %
クラス貢献度合計 Class Contribution Total 60 %
予習レポート Preparation Report 0 %
小テスト Quizzes / Tests 0 %
シミュレーション成績 Simulation 0 %
ケース試験 Case Exam 0 %
最終レポート Final Report 40 %
期末試験 Final Exam 0 %
参加者による相互評価 Peer Assessment 0 %
合計 Total 100 %

評価の留意事項 Notes on Evaluation Criteria

使用ケース一覧 List of Cases

    ケースは使用しません。

教科書 Textbook

  • 配布資料

参考文献・資料 Additional Readings and Resource

N/A

授業調査に対するコメント Comment on Course Evaluation

N/A

担当教員のプロフィール About the Instructor 


Ricardo A. Lim, Ph.D. is a professor at the NUCB Business School and visiting professor at Ritsumeikan APU, Beppu, Japan. He was a former Dean of AIM, former President of the Association of Asia Pacific Business Schools (a consortium of 80 Asian B-schools), founding member of the Global Network to Advance Management at Yale Business School, and Asia-Pacirfic Advisory Council of AACSB. He teaches information systems, statistics, analytics, and design thinking x lean x agile concepts. He has published in the MIS Quarterly and the Journal of Management Information Systems, and serves as Associate Editor for the International Journal of Business and Economics, Taiwan. He currently consults for education and financial services sectors. Before joining academe he was a senior consultant for the Computer Sciences Corporation in Boston and Siemens Computing in Manila. He has a Ph.D. from the U. of Southern California, an MBA from the U. of Virginia, and a B.Com. from McGill University.

Refereed Articles

  • (2023) Determinants of Conspicuous Consumption in Smartphones. Asia Pacific Journal of Information Systems 33(3): 2288-5404
  • (2023) A Study of Satisfaction and Loyalty for Continuance Intention of Mobile Wallet in India. International Journal of E-Adoption (IJEA) 15(1): 1937-9633
  • (2021) Developing and Testing a Smartphone Dependency Scale Assessing Addiction Risk. International Journal of Risk and Contingency Management 10(4): 2160-9624
  • (2021) Business Model Innovation: A Study of Empowering Leadership. Creativity and Innovation Management 1467-8691
  • (2021) The Effect of Reciprocity on Mobile Wallet Intention: A Study of Filipino Consumers. International Journal of Asian Business and Information Management 12(2): 1947-9638






ページ上部へ戻る